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Let us consider a rod BC, of length L and uniform cross-sectional area A, which is suspended
from B.

Figure3—5: Deformation of axially-loaded rod.

If we apply a load P to end C, the rod elongates. Plotting the magnitude P of the load against
the deformation o (Greek letter delta), we obtain a certain load-deformation diagram.
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While this diagram contains information useful to the analysis of the rod under consideration,
it cannot be used directly to predict the deformation of a rod of the same material but of
different dimensions.
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Indeed, we observe that, if a deformation ¢ is produced in rod BC by a load P, a load 2P is
required to cause the same deformation in a rod B'C’of the same length L, but of cross-

sectional area 2A.
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We note that, in both cases, the value of the stress is the sameoc =P/ A.

On the other hand, a load P applied to a rod B"C”, of the same cross-sectional area A, but of
in that rod, i.e., a deformation twice as large as the
deformation ¢ it produces in rod BC. But in both cases the ratio of the deformation over the
length of the rod is the same; it is equal too / L. This observation brings us to introduce the

length2L, causes a deformation

concept of strain:

We define the normal strain in a rod under axial loading as the deformation per unit length of

that rod. Denoting the normal strain by ¢ (Greek letter epsilon), we write




